首頁  >  科學研究  >  科研團隊  >  正文
微納功能材料與器件中心

微納功能材料中心于2015年成立。團隊負責人是簡賢博士,主要成員有尹良君博士、慕春紅博士、唐輝博士、Nasir Mahmood博士(兼職)。微納功能材料與器件中心(CMD)”主要研究方向聚焦于國家戰略需求的微波吸收、能源存儲及轉化器件,研究思路以材料-功能-器件-應用路線為牽引,培養一批勇于創新、積極進取、敢于擔當、具有國際化視野的綜合性人才。

目前CMD中心代表性裝置及技術有:(1)石墨烯膠囊高通量合成技術,(2)二維單晶高通量制備裝置及技術,(3)金屬氧化物表面原位生長石墨烯膠囊技術,(4)原位Raman-ALD-CVD聯用技術,(5)微弧氧化技術。CMD中心發展的新材料有:石墨烯膠囊、儲能材料、二維單晶材料、發光材料、量子點材料、超高溫陶瓷材料、巨介電陶瓷材料。CMD中心研究成果主要應用:微波吸收器件、清潔能源存儲器件(鋰離子電池、鈉離子電池、超級電容器、傳感器)、熱障涂層、光催化領域、高介電材料電容器件。

CMD中心累計主持及參與國家級項目10余項,省部級項目4項,主研863項目1項,發表SCI學術論文累計150余篇,授權專利20余項。

團隊成員:

   簡賢博士:副研究員,主要研究領域涉及微波吸收材料、碳材料CVD合成,ALD-原位Raman表征、二維單晶材料、儲能材料(超級電容器、鋰離子電池等)研究。已發表30余篇SCI論文,代表性論文發表在ACS Nano,Advanced Energy Materials ,ACS Applied Materials & Interfaces,Chemical Engineering Journal ,Carbon,Crystal Growth & Design,PCCP,APL等著名國際期刊上。申請國家發明專利5項;主持項目4項(含國家自然科學青年基金1項,中央軍委科技委項目1項,四川省科技支撐項目1項,中國博士后面上項目1項);2015-2016年赴澳大利亞以高級訪問學者做學術交流。

   尹良君博士:副教授,從事超高溫陶瓷材料和發光材料的研發,并從原子尺度闡述機理,實現其在高技術、新能源領域中的應用,研究方向包括超高溫陶瓷材料的設計和實現、高效半導體照明。已在Chem. Commun., J. Am. Ceram. Soc., opt. mater等權威SCI期刊上發表科研論文40余篇,授權國家發明專利5項,主持國家自然科學青年基金一項,于2015-2016期間獲得國家留學基金委公派全額資助,赴荷蘭代爾夫特理工大學進行博士后研究,從事半導體原子層沉積的研究工作。

   慕春紅博士:副教授,主要從事巨介電陶瓷材料的研發工作,開發其在大容量儲能器件以及柔性傳感器等方向的應用。已發表SCI論文20余篇,申請國家授權發明專利5項,主持國家自然科學基金青年基金項目1項,四川省科技支撐項目2項,主研橫向課題3項。 

      Nasir Mahmood博士:CMD團隊兼職成員之一,于2015年在北京大學獲得博士學位。分別在2015-2016年于澳大利亞臥龍崗大學和2016-2017年于中國天津大學擔任研究員,目前在澳大利亞皇家墨爾本理工大學工作。他曾擔任《Nanostructures for energy storage》、《Journal of Advances in Materials Science and Engineering》和《Energy materials》、《Journal of Electrical Engineering》主題編輯的客座主編。在包括Chem. Soc. Rev., Adv. Mater., Nano Today, Adv. Energy Mater., ACS Nano, Nano Energy, ACS Catalysis, Adv. Sci.等權威期刊上發表論文60余篇,總引用量超過3000次,H指數25。此外還有兩項專利,三本著作。他的研究涉及納米材料及其異質性納米結構的合成,用于催化、環境、電子、能量轉換和存儲設備。



研究方向

(1)微波吸收材料:包括超高溫陶瓷、石墨烯膠囊為主的微波吸收材料等。

2)清潔能源儲能材料及器件:包括石墨烯膠囊為主的超級電容器、鋰離子、鈉離子電池,鋰空氣電池等。

3)能量轉換材料及器件: 發光二極管(LED)、激光二極管(LD)和平板顯示器件中,光轉換材料作為關鍵材料,影響器件的能效和壽命,通過實驗和計算相結合,提高器件光學性能。

4)超高溫陶瓷的設計和實現,提升其在特殊領域的抗氧化性能。

5)微納功能涂層和器件:主要包括金屬表面陶瓷化、多層核殼結構功能納米粒子等方面的研究。


學術成果

1. 石墨烯膠囊高通量制備技術

本產品石墨烯膠囊是一種新型碳材料,其具有三維空心結構,厚度范圍0.68?~100 nm,空心膠囊的直徑范圍20 nm~10 μm。石墨烯膠囊晶體結構介于無定形碳和石墨烯之間。以石墨烯材料為基本單元,構建三維的空心膠囊結構,將在催化、儲能領域有廣闊的應用。

1制備的碳納米膠囊的代表性SEM圖與HRTEM

2.高通量二維單晶爐裝置搭建及二維單晶合成

高通量二維單晶爐裝置實現了二維單晶的高通量可控制備同時也提升了高品質二維單晶的生產效率。

2 a)高通量二維單晶爐裝置實物圖,(bMX2二維單晶實物圖和(c)單晶SEM

3. 高流明激光二極管陶瓷片的優化

首創材料表面微孔道設計,大幅提高材料吸光度,已在某激光器件上連續運行達5620小時。

             

 

3 高流明激光二極管陶瓷片實物圖

 

4.柔性壓力傳感器

在制備巨介電CCTO納米晶超細粉體的基礎上,采用CCTO表面修飾處理技術,以及軟模板造孔技術制備了CCTO/PDMS復合多孔膜,在此基礎上研制出柔性電容式壓力傳感器。研究了復合比例、孔隙率對柔性膜力學性能和壓力-電容信號的影響,開發出高靈敏度壓力傳感器,有望應用于人體脈搏信號的提取。

                         

 

4 CCTO/PDMS柔性多膜的(a)應力-應變曲線;(b)壓力-電容測試裝置;(c)壓力-容靈敏度曲線;(d)傳感器量程與CCTO含量之間的關系曲線;(e)壓力-電容循環測試(3000);(f)壓力-電容循環測試局部曲線。


由圖可見,CCTO/PDMS柔性多孔膜具有超柔性,含量10%的樣品其壓縮模量僅為0.0115 MPa.采用此類柔性膜開發的電容式壓力傳感器靈敏度可以達到1.66 kPa-1,并且傳感器顯示出優異的循環壓縮耐受性。傳感器可用于可穿戴脈搏信號采集、小信號壓力采集等場合。

代表性論文(Selected Publications

1.      Jian X, Wu B, Wei Y, et al. Facile synthesis of Fe3O4/GCs composites and their enhanced microwave absorption properties[J]. ACS applied materials & interfaces, 2016, 8(9): 6101-6109. (ESI高引,引用88次。)

2.      Mu C, Song Y, Huang W, et al. Flexible Normal‐Tangential Force Sensor with Opposite Resistance Responding for Highly Sensitive Artificial Skin[J]. Advanced Functional Materials, 2018.

3.      Jian X, Jiang M, Zhou Z, Zeng Q, Lu J, Wang D, et al. Gas-Induced Formation of Cu Nanoparticle as Catalyst for High-Purity Straight and Helical Carbon Nanofibers. ACS Nano. 2012;6(10):8611-9. (IF12.062)

4.      Jian X, Xiao X, Deng L, et al. Heterostructured Nanorings of Fe? Fe3O4@ C Hybrid with Enhanced Microwave Absorption Performance[J]. ACS applied materials & interfaces, 2018.

5.      Yin L J, Liang Y L, Zhang S H, et al. A novel strategy to motivate the luminescent efficiency of phosphor: drilling nanoholes on the surface[J]. Chemical Communications, 2018.

6.      Jian X, Liu S, Gao Y, et al. Facile Synthesis of Three-Dimensional Sandwiched MnO2@ GCs@ MnO2 Hybrid Nanostructured Electrode for Electrochemical Capacitors[J]. ACS applied materials & interfaces, 2017, 9(22): 18872-18882.

7.      Wu S, Lv W, Lei T, Han Y, Jian X, Deng M, & He, W. Distinctive Supercapacitive Properties of Copper and Copper Oxide Nanocrystals Sharing a Similar Colloidal Synthetic Route. Advanced Energy Materials, 2017, 7(14).

8.      Xian Jian, Gaofeng Rao, Zhicheng Jiang, Liangjun Yin et al.Mechanistic study of graphitic carbon layer and nanosphere formation on the surface of T-ZnO. Inorg. Chem. Front, 2017,4, 978 (IF4.04)

9.      Gaofeng Rao#, Xian Jian#, Weiqiang Lv#, Gaolong Zhu et al. A highly-efficient route to three-dimensional nanoporous copper leaves with high surface enhanced Raman scattering properties. Chemical Engineering Journal, 2017,321,394–400 (IF6.216)

10.  Xian Jian, GuozhangChen, Hongyang Liu, Nasir Mahmood, et al. Vapor? Dissociation?Solid Growth of Three-Dimensional Graphite-like Capsules with Delicate Morphology and Atomic-level Thickness Control. Cryst. Growth Des. 2016, 16, 5040?5048 (IF4.06)

11.  Hui Tang, Xian Jian, Biao Wu, Shiyu Liu, et al. Fe3C/helical carbon nanotube hybrid: Facile synthesis and spin-induced enhancement in microwave-absorbing properties. Composites Part B. 2016, 107, 51-58 (IF5.19)

12.  Jian X, Jiang M, Zhou Z, Yang M, Lu J, Hu S, et al. Preparation of high purity helical carbon nanofibers by the catalytic decomposition of acetylene and their growth mechanism. Carbon. 2010;48(15):4535-41. (IF:6.196)

13.  Jian X, Chen G, Wang C, Yin L, Li G, Yang P, et al. Enhancement in photoluminescence performance of carbon-decorated T-ZnO.Nanotechnology. 2015;26(12). (IF:3.821)

14.  Jian X, Chen X, Zhou Z, Li G, Jiang M, Xu X, et al. Remarkable improvement in microwave absorption by cloaking a micro-scaled tetrapod hollow with helical carbon nanofibers. Physical Chemistry Chemical Physics. 2015; 17(5):3024-31. (IF:4.493)

15.  Daeneke, T. ; Khoshmanesh, K.; Mahmood, N.; Alves de Castro, I.; Esrafilzadeh, D.; Barrow, S. J.; Dickey, M.D.; Kalantar-zadeh, K., Liquid Metals: Fundamentals and Applications in Chemistry, Chem. Soc. Rev., 2018, doi: 10.1039/C7CS00043J. (IF=38.618)

16.  Zhang, R.; Zhang, Y-C.; Pan, L.; Shen, G-Q.; Mahmood, N.; Ma, Y.; Shi, Y.; Jia, W.; Wang, L.; Zhang, X.; Xu, W.; Zou, J., Engineering Cobalt Defects in Cobalt Oxide for Highly Efficient Electrocatalytic Oxygen Evolution, ACS Catalysis, 2018, 8, 3803.(IF=10.614)

17. Zhang, J. W.; Si, G.; Mahmood, N.; Pan, L.; Zhang, X.; Zou, J., Oxygen-doped nanoporous carbon nitride via water-based homogeneous supramolecular assembly for photocatalytic hydrogen evolution , Appl. Catal. B: Environ., 2018, 221, 9-18. (IF= 9.446)

18.   Mahmood, N.; Yao, Y.; Zhang, Z.; Pan, L.; Zhang, X.; Zou, J., Electrocatalysts for Hydrogen Evolution in Alkaline Electrolytes: Mechanisms, Challenges, and Prospective Solutions, Adv. Sci., 2018, 1700464. (IF= 9.034)

19.  Tahir, M.; Pan, L.; Zhnag, R.; Wang, Y.; Shen, G.; Aslam, I.; Qadeer., M. A.; Mahmood, N.; Xu, W.; Wang, L.; Zhang, X.; Zou, J., High-Valence-State NiO/Co3O4 Nanoparticles on Nitrogen-Doped Carbon for Oxygen Evolution at Low Overpotential, submitted to  ACS Energy Lett., 2017, 2, 2177.

20.  Mahmood, N.; Zhang, C.; Liu, F.; Zhu, J.; Hou, Y., Hybrid of Co3Sn2@Co Nanoparticles and Nitrogen-Doped Graphene as a Lithium Ion Battery Anode, ACS Nano, 2013, 7, 10307-10318. (IF:12.062)

21.  Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y., Synthesis of Phosphorus-Doped Graphene and its Multifunctional Applications for Oxygen Reduction Reaction and Lithium Ion Batteries, Adv. Mater., 2013, 25, 4932-4937. (IF:17.49)

22.  Yin L J, Xie W J, Wang M, et al. Insight into the evolution mechanism of carbon film and Eu valence in carbon coated BaMgAl 10 O 17: Eu 2+ phosphor annealed in air[J]. Ceramics International, 2018.

23.  Yin L J, Cai C, Wang H, et al. Luminescent properties and microstructure of SiC doped AlON: Eu2+ phosphors[J]. Journal of Alloys and Compounds, 2017, 725: 217-226.

24.  L-J Yin, X Xu, W Yu et al., "Synthesis of Eu2+ Doped AlN Phosphors by Carbothermal Reduction," J. Am. Ceram. Soc. 2010, 93, 1702-1707.

25.  L-J Yin, W Yu, X Xu et al., "The Effects of Fluxes on AlN:Eu2+ Blue Phosphors Synthesized by a Carbothermal Reduction Method," J. Am. Ceram. Soc., 2011, 94, 3842-3846.

26.  L-J Yin, W Yu, X Xu et al., “Synthesis and photoluminescence of Eu, Mg-AlON phosphors by carbothermal reduction” J. Lumin., 2012, 132, 671–675.

27.  L-J Yin, Q-Q Zhu, W Yu et al., "Eu luminescence and its location in Eu solely doped AlN based phosphor" J. Appl. Phys., 2012, 111, 053534.

28.  L-J Yin, W-W Hu, X Xu et al., "Synthesis of pure AlON: Eu2+, Mg2+ phosphors by a mechanochemical activation route" Ceram. Int. 2013, 39, 2601-2604.

29.  L-J Yin *, G-Z Chen, Z-Y Zhou et al., " Improved Blue-Emitting AlN:Eu2+ Phosphors by Alloying with GaN”, J. Am. Ceram. Soc. 2015, 98, 3897–3904.

30.  G-Z Chen, L-J Yin*, et al.,“Synthesis, crystal structure and luminescence properties of Y4Si2O7N2: Eu2+ oxynitride phosphors” , J. Am. Ceram. Soc. 99, 183–190 (2016).

31.  L-J Yin*, J. T. Dong, et al., “Enhanced Optical Performance of BaMgAl10O17:Eu2+ Phosphor by a Novel Method of Carbon Coating”,J. Phys. Chem. C, 2016, 120, 2355?2361.

32.  L-J Yin*, W-W Ji, et al., “Intriguing luminescence properties of (Ba, Sr)3Si6O9N4: Eu2+ phosphors via modifying synthesis method and cation substitution”, J. Alloy. Compd. 2016, 120, 2355?2361.

33.  Liang-Jun Yin*, Benjamin Dierre, et al., "Transition of Emission Colours as a Consequence of Heat-Treatment of Carbon Coated Ce3+-Doped YAG Phosphors", Materials, 2017, 10, 1180 invited paper.

34.  Liang-Jun Yin*, Chao Cai, et al., "Luminescent properties and microstructure of SiC doped AlON: Eu2+ phosphors", J. Alloy. Compd., 2017, 725, 217.

35.  Xian Jian, Liang-Jun Yin*, et al., "Insight the Luminescence Properties of AlON: Eu, Mg Phosphor under VUV Excitation", Materials, 2017, 10, 723.

36.  Chunhong Mu, Yuanqiang Song, Haibin Wang, et al. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics. Journal of Applied Physics, 2015, 117(17), 323.

37.  Chunhong Mu, Yuanqiang Song, Xiaoning Wang, et al. Kesterite Cu2ZnSnS4 compounds via electrospinning: A facile route to mesoporous fibers and dense films,Journal of Alloys and Compounds, 2015, 645, 429-435.

38.  Chunhong Mu, Yuanqiang Song, Aifang Liu, et al. Electrospun Cu2ZnSnS4 microfibers with strong (112) preferred orientation: fabrication and characterization. RSC Advances, 2015, 5, 15749.

39.  Chunhong Mu, Hongxue Qi, Yuanqiang Son, et al. One-pot synthesis of Nanosheet-assembled hierarchical MoSe2/CoSe2 microcages for the enhanced performance of electrocatalytic hydrogen evolution. RSC Advances, 2016, 6, 23-30.

40.  Chunhong Mu, Yuanqiang Song, Kai Deng, et al. High Solar Desalination Efficiency Achieved with 3D Cu2ZnSnS4 Nanosheet-Assembled Membranes. Advanced Sustainable System, 2017, 1700064-1700064.

相關專利:

1.一種三明治結構MnO2@GCs@MnO2復合材料的制備方法。ZL201610071345.5

2.氧化銅納米材料的制備方法。ZL201410257872.6

3.一種鎳納米催化劑制備螺旋碳納米材料的方法。ZL201410628627.1

4.一種Cu2-xS熱電材料的制備方法。ZL201510190458.2

5.一種碳包覆的BAMEu2+藍色熒光粉及其制備方法。ZL2014 10608399.1

6.一種高純、高亮度AlNEu藍色熒光粉的制備方法。ZL2013 1 0539952.6

7.一種超細、高純γ-AlON透明陶瓷粉末的制備方法。ZL2013 1 0472981.5

8.一種藍光紫外連續可調的鋁酸鹽熒光粉及其制備方法。ZL20131 0472985.3

9.Eu2+摻雜Y4Si2O7N2藍色熒光粉及制備方法。201410605722.X

10一種鈦酸鎂粉體的合成方法。 ZL201410050422.X

11.一種鉛合金表面制備氧化鈦陶瓷涂層的方法。ZL201310687935.7

12.一種鉛板柵表面原位生長氧化鋁和氧化鉛陶瓷涂層的方法。ZL201310689711.X

13.鈦酸銅鈣/聚二甲基硅氧烷復合柔性泡沫及其制備方法和應用。2017101692319

14.一種摩擦力敏感的復合柔性電阻膜及其制備方法以及摩擦力傳感器。2017101692319

15.一種低損耗、巨介電CCTO陶瓷材料及其制備方法。201711245607.6

 

學術專著Scholarly Books

1.      Mahmood, N.; Mahmood, A.; Islam, M., Handbook of Carbon Nanotubes-Polymer Nanocomposites, Lambert Publisher, 2014, ISBN: 987-3-659-64990-5.

2.      Zhang, C.; Mahmood, N.; Yin, H.; Hou, Y., Graphene-Based Nanomaterials for Energy Conversion and Storage, Chapter 2, Volume 6, Handbook of Carbon Nano Materials, 2014, ISBN: 978-981-4566-73-5.

3.      Zhu, J.; Mahmood, N.; Liu, F.; Hou, Y., Graphene-Based Polymer Nanocomposites in Electronics, Chapter 5: Graphene Polymer Nanocomposites for Fuel Cells, Springer, 2015, ISBN: 978-3-319-13875-6.





團隊成員 3 人
天吉论坛